The flow of Herschel-Bulkley fluids

Ian Morrison, Cabot Corporation
Thin polymer-filled layers coated from dispersions
Typical shear thinning rheogram

Photoconductive Pigment in Nonaqueous Polymer Solution

![Graph showing shear thinning behavior](graph.png)
Data is reasonably fitted by a power law

\[\eta = \eta_0 \dot{\gamma}^{n-1} \]

\(n \) is the power law index and is one for a Newtonian fluid.

Photoconductive Pigment in Nonaqueous Polymer Solution

Shear rate (s\(^{-1}\))

Viscosity (mPa s)

\(\eta = 0.58 \dot{\gamma}^{-0.75} \)

\(n = 0.25 \)
The flow of a shear thinning liquid through a pipe

The reduced flow rate of a shear thinning liquid is:

\[\bar{v} = \frac{1 + 3n}{1 + n} \left[1 - \left(\frac{r}{R} \right)^{\frac{1}{n+1}} \right] \]

Same data replotted

Shear stress versus shear rate

Shear stress (Pa)

Shear rate (s^{-1})
How yield points approximate power law flow

Shear stress versus shear rate

The slope is the viscosity.
Herschel-Bulkley rheology

Model the flow as shear thinning above some yield point:

\[\tau = \tau_0 + m\dot{\gamma}^n \]

Note the value of “n” is now higher, apparently less shear thinning.
Effect of a yield point on flow

If a fluid has a yield point, τ_0, and is under pressure, p, a column of radius r and length L in the center moves as a plug. The plug radius can be calculated.

$$p = \frac{\tau_0 (2\pi r L)}{\pi r^2}$$

or

$$r = \frac{2\tau_0 L}{p} = \frac{2\tau_0}{P}$$

P is the pressure drop.
Flow of an Herschel-Bulkley fluid through a pipe

\[r > \frac{2\tau_0}{P} \]

\[\text{velocity} = \frac{-P^2 (3n+1)(2n+1)R^2 ((PR - \tau_0)^{-1/n} (Pr - \tau_0)^{\frac{1+n}{n}} - PR + \tau_0)}{2n^2 \tau_0^3 - R^3 P^3 + 2n\tau_0^2 RP + \tau_0 R^2 P^2 n - 2R^3 P^3 n^2} \]

else

\[\text{velocity} = \frac{2\left(1 - \frac{\tau_0}{RP}\right)^2}{\left(1 - \frac{4}{3} \frac{\tau_0}{RP} + \frac{1}{3} \left(\frac{\tau_0}{RP}\right)^4\right)} \]
Flow of Herschel Bulkley fluid

The fitted Herschel-Bulkley parameters:

\[n = 0.75 \]
\[\tau = 0.5 \text{ Pa} \]

with a reasonable pressure drop

\[P = 10^6 \text{ Pa}/0.1m \]

Note: The radius of the plug is:

\[r = \frac{2 \times 0.5 \text{ Pa}}{10^5 \text{ Pa}/0.1m} = 1\mu m \]
Comparison of predicted flows: Power law and Herschel-Bulkley
Some Problems Require More Study
Surface Energy Characterization of Fibers, Fillers and Paper

D. Steven Keller, Empire State Paper Research Institute, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210
E-mail: dskeller@syr.edu

Ian D. Morrison, Cabot Corporation, 157 Concord Road, Billerica, MA 01821
E-mail: Ian_Morrison@Cabot-Corp.com

Philadelphia, August 22-26, 2004
228th ACS National Meeting
Pennsylvania Convention Center, Philadelphia

PROGRAM CHAIR R. Nagarajan, Department of Chemical Engineering, Penn State University, University Park, PA 16802 E-mail: rxn@psu.edu

Submit abstracts via Online Abstract Submittal System (OASYS) at www.acs.org/meetings
Deadline for submission of 150 words abstract is April 15, 2004.